

Snappy Ubuntu Core

James Henstridge
james@jamesh.id.au

Timeline

● 2012: Ubuntu ported to Nexus 7
– Standard Ubuntu desktop

● 2013: Ubuntu Touch project launched
– Touch oriented UI
– Read-only image based updates, Click packages
– Hardware released in 2015

● 2014: Snappy Ubuntu Core
– Strips UI from Touch to provide a core

Snappy Overview

● Small base image (“Ubuntu Core”)
● Does not replace traditional Ubuntu
● Read-only root file system, allowing for transactional

updates
● Applications isolated from base system and each other

– applications confined with AppArmor
– stored separate from base image

● Can be augmented with “frameworks” to provide
additional functionality to apps

Possible Use Cases

● Cloud servers
● Routers
● Internet of Things devices
● ...

Installation

● Instructions on developer site:
– https://developer.ubuntu.com/en/snappy/start/

● Images available for:
– x86 (bare metal, cloud, VM)
– Beaglebone Black
– Raspberry Pi 2

https://developer.ubuntu.com/en/snappy/start/

Partition Layout (R-Pi 2)

mmcblk0p1 64 MB system-boot

mmcblk0p2 1 GB system-a

mmcblk0p3 1 GB system-b

mmcblk0p4 (remainder) writable

Read-only Root Image

$ cat /etc/fstab

Auto-generated by /init

DO NOT EDIT THIS FILE BY HAND - YOUR CHANGES WILL BE OVERWRITTEN

(See writable-paths(5) for details)

/dev/root / rootfs defaults,ro 0 0

/writable/user-data /home none bind 0 0

/writable/system-data/apps /apps none bind 0 0

/writable/system-data/oem /oem none bind 0 0

tmpfs /tmp tmpfs defaults 0 0

tmpfs /mnt tmpfs defaults 0 0

/writable/system-data/var/lib/apps /var/lib/apps none bind 0 0

/writable/system-data/var/lib/cloud /var/lib/cloud none bind 0 0

...

Transactional Updates

● System image is read only, so in known state
● Apply binary patch to contents of system-a

partition and write to system-b
● Boot with system-b as root.

Applications

● Installed to /apps/$package/$version
– Contents of this directory are under control of package

● System wide writable data in /var/lib/apps/
$package/$version

● Per user data in ~/apps/$package/$version
● Commands from package made available on $PATH

– Using wrapper to enforce confinement

● Can install services managed by systemd

Frameworks

● Packaged the same way as applications
● Provide extra functionality for apps
● Can provide security policy fragments for

dependent apps

Creating Snappy Packages

● Use Snapcraft
– https://developer.ubuntu.com/en/snappy/snapcraft/

● Package metadata and build description
expressed as YAML

● Supports common build systems (make,
autotools, Python pip, Go, etc)

● Does not currently support cross compilation

https://developer.ubuntu.com/en/snappy/snapcraft/

Simple Python Snapcraft Project

https://github.com/jhenstridge/plug-snappy-examp
le-python

– snapcraft.yaml
– readme.md
– icon.png

– setup.py
– mycat.py

https://github.com/jhenstridge/plug-snappy-example-python
https://github.com/jhenstridge/plug-snappy-example-python

snapcraft.yaml

name: plug-example-python

version: 1

vendor: James Henstridge <james@jamesh.id.au>

summary: Example python package

description: Example python package

icon: icon.png

binaries:

 mycat:

 exec: usr/bin/mycat.py

parts:

 mycat:

 type: python3-project

 source: .

mycat.py (trivial Python application)

import sys

def main(argv):

 try:

 with open(argv[1], 'r') as fp:

 buf = fp.read(4096)

 while buf:

 sys.stdout.write(buf)

 buf = fp.read(4096)

 except Exception as exc:

 print("Error:", str(exc))

 return 1

if __name__ == "__main__":

 sys.exit(main(sys.argv))

Building and Deploying

● Running “snapcraft” downloads dependencies
and assembles package
– Must be done on same arch as target

● Copy plug-example-python_1_armhf.snap to
target

● Install package:

sudo snappy install --allow-untrusted \
 plug-example-python_1_armhf.snap

Building for ARM

● qemu: emulated ARM system (slow)
● Ubuntu on another ARM device (e.g.

Chromebook with Crouton)
● Run traditional Ubuntu inside container on R-Pi:

sudo snappy install lxd
lxc remote add images images.linuxcontainers.org
lxc launch images:ubuntu/vivid/armhf dev
lxc exec dev bash

Security

● No access to data owned by other apps:
$ plug-example-python.mycat \
 apps/lxd/0.19-1/.config/lxc/client.key
Error: [Errno 2] No such file or directory:
'apps/lxd/0.19-1/.config/lxc/client.key'

● Access to hardware must be granted post-
install. For example:
sudo snappy hw-assign my-webcam-app /dev/video0

Services

services:

 - name: webserver

 description: "..."

 start: ./path-to-webserver

 caps:

 - networking

 - network-service

Resources:

● Snappy developer documentation:
– https://developer.ubuntu.com/en/snappy/

● Python test example:
– https://github.com/jhenstridge/plug-snappy-example

-python/

https://developer.ubuntu.com/en/snappy/
https://github.com/jhenstridge/plug-snappy-example-python/
https://github.com/jhenstridge/plug-snappy-example-python/

Demo

