
 1

Unity Scopes
On the Desktop and Phone

Presentation by
James Henstridge
james.henstridge@canonical.com
www.canonical.com
linunx.conf.au, January 2014

http://www.canonical.com/

2

What are scopes?

● Scopes are the back end for the Unity dash (accessed via the Super/Windows key)

● Back end feature set follows requirements of UI

● Provide results for different types of data (applications, files, videos, music, etc)

● Provide results in responses to searches and for “surfacing”

● Determine how to activate or preview results

3

Dash Overview

● Displays a set of “surfacing” results when opened

● Results broken down by category labels

● Incremental search results are displayed as the user types

● Pages for different types of result (apps, files, music, etc) available via tabs at the bottom

● Domain specific filters available to limit results

● Results can be previewed (click), or activated (double click)

4

Dash Overview (2)

5

Dash Overview (3)

6

Results

● A scope result is essentially a collection of metadata key/value items.

● Some items are predefined such as:

– URI

– Title

– Icon

– Category

● Scopes can also store arbitrary metadata in a result

7

Searching

● The primary operation for a scope

– Empty search string used for surfacing

● Results are pushed to the client

● Search can be cancelled, e.g. for incremental searches

● Changes to filters result in new searches

8

Activating Results

● Client requests that the scope

– full result dictionary is passed back to the scope

● Scope can reply in a number of ways:

– NOT_HANDLED: tells client to activate result itself

– SHOW_DASH/HIDE_DASH: scope handled activation

– GOTO_PREVIEW: display a preview

– PERFORM_SEARCH: tell client to perform a new search

9

Previews

● Slient can request a preview by passing a result to the scope

● Scope can pick one of a small number of templates for the preview (generic, application,
music, video, etc)

● One or more action buttons can be attached, which are handled via the activation API

10

Master Scopes

● Each page of the dash is handled by a master scope

● Master scopes aggregate results from other results

– provide the same API as regular scopes

● For best the experience, scopes under the same master scope should use the same
categories and filters when appropriate

● You probably won't want to write a new master scope: instead, plug in to an existing master
scope

11

Smart Scope Server

● Scopes run on a remote server, with results sent to client via HTTP

● Access to multiple scopes multiplexed over a single request

● Only suitable for anonymous non-personal results

● Currently integrated via the “home” master scope

12

Overview

Ref: http://developer.ubuntu.com/scopes/overview/

13

Phone

● Unity 8 phone shell modelled on the
Dash

● Uses the same back end scopes API

● Some scopes needed replacement
when they depended on functionality
not present on the phone

● Due to limited resources, a push to run
as many scopes remotely as possible

● Discourage use of Python for local
scopes

14

Scope Sample

from gi.repository import Unity

class MyScope(Unity.AbstractScope):
 def get_categories(self):
 cats = Unity.CategorySet.new()
 cats.add(Unity.Category.new('name', 'Display name',
icon,
 Unity.CategoryRenderer.DEFAULT))
 return cats
 def do_create_search_for_query(self, search_context):
 return MySearch(search_context)
 def do_create_previewer(self, result, metadata):
 return MyPreviewer(result, metadata)
 def do_activate(self, result, metadata):
 ...

15

Scope Sample (2)

class MySearch(Unity.ScopeSearchBase):
 def __init__(self, search_context):
 super(MySearch, self).__init__()
 self.set_search_context(search_context)

 def do_run(self):
 query = self.search_context.search_query
 result_set = self.search_context.result_set
 result = Unity.ScopeResult.create(
 uri, icon, category, result_type, mimetype,
 title, comment, dnd_uri, metadata)
 result_set.add_result(result)
 ...
 if self.search_context.cancellable.is_cancelled():
 return
 ...

16

Scope Sample (3)

class MyPreviewer(Unity.ResultPreviewer):
 def __init__(self, result, metadata):
 super(MyPreviewer, self).__init__()
 self.set_scope_result(result)
 self.set_search_metadata(metadata)

 def do_run(self):
 preview = Unity.GenericPreview.new(
 self.result.title, '', icon)
 preview.add_action(Unity.PreviewAction.new(
 "open", "Open", None))
 return preview

17

Additional configuration

● Scope configuration file

– provides basic metadata and IPC endpoint to talk to scope

– The RemoteContent key used to blanket disable remote access

● configuration file location determines which master scope it feeds data to

18

Future

● New version of the scopes API

– C++11 API

– Go and Javascript bindings in development

● Ability to confine scopes via AppArmor

– e.g. make “access to network” and “access to personal data” mutually exclusive

– restrict how scopes can talk with each other

19

Resources

● Ubuntu Developer website:

– http://developer.ubuntu.com/scopes/overview/

– http://developer.ubuntu.com/scopes/tutorial/

● New scopes API:

– bzr branch lp:unity-scopes-api

http://developer.ubuntu.com/scopes/overview/
http://developer.ubuntu.com/scopes/tutorial/

 20

Questions please
Thank you

James Henstridge
james.henstridge@canonical.com
www.canonical.com

mailto:james.henstridge@canonical.com

