
EggToolbar and EggMenu

GUADEC 2003
Dublin, Ireland James Henstridge <james@daa.com.au>

Introduction

What are they?

EggMenu in depth.
Comparison with existing APIs.
Some concepts used by the system.
Description.

What Are They?

EggToolbar:

A new toolbar implementation for GTK.

Aims to be mostly backward compatible with the existing GtkToolbar and
the BonoboUIToolbar.

EggMenu:

A new menu and toolbar handling API.

Action based.

Both will hopefully land in GTK 2.4.

Why Target GTK?

While some people would like to see all GTK application developers use
Gnome libraries, this probably won't happen soon for a number of
reasons:

Portability to Windows.
Limit number of dependencies.

Adding new features at the wrong conceptual level to encourage
application developers doesn't seem to work.

Need a better strategy.
Provide a good set of APIs in GTK for people to use.
Make those APIs extensible so that Gnome (and others) can add some value.

This has the following benefits:
GTK only application developers can also use the best of our APIs.
If they want to use some Gnome libraries, they don't need to rewrite half their
application.

EggToolbar History

Existing GtkToolbar acts quite different to most containers.
children are usually created while adding to the parent.
All interfaces for manipulating buttons work with child indices.

a pain to keep track of if you are removing or inserting items.
Some desired toolbar layouts are impossible.

Right aligned items.
items that expand (such as the location bar in a web browser).

BonoboToolbar also has its problems:
It was written due to limitations of GtkToolbar.
It is not exposed directly to the programmer.
It acts subtly different to GtkToolbar.

EggToolbar Features

Primarily written to provide features needed by the new menu code.

Designed to provide an API backward compatible with GtkToolbar.
If you never use any of the new APIs, it should act almost identical to the old
API.
If you do use some of the new interfaces, some of the obscure parts of the old
API will change.

All toolbar child widgets are EggToolItems.
Items can be added and removed like normal widgets.
Some intelligence has been moved to the items, so that they are responsible
for following the style of the toolbar.

Items can be right aligned. (eg. throbbers)

Items can expand to fill available space. (eg. location bars)

Overflow is handled.

Why a New Menu Handling API?

Existing menu API is insufficient for advanced programs.

Bonobo addresses this to an extent, but has some issues:
API differs to the GTK one, so significant effort must be made to port to
Gnome.
Requires use of CORBA, which some people don't like for some reason.

We want an API in GTK that:
satisfies the requirements of larger applications.
satisfies needs of larger applications
simple to use so that it doesn't look too heavy for small applications
flexible enough that it can be extended to do what component systems and
compound document systems need it to

Existing Menu/Toolbar API

Code for creating menus looks a bit like this:
Create GtkMenuBar
Add GtkMenuItems for toplevel menus, and attach GtkMenus to them.
Add GtkMenuItems to the GtkMenus
Attach callbacks to the "activate" signal of the menu items
Repeat for sub-menus ...

Toolbars are similar, although no sub-menus.

The GtkItemFactory code can help here, but it is essentially a short hand
for the above.

Problems With the Existing API

Menu structure defined by code
if you want to rearrange menu structure, you need to rearrange the code

sometimes causes problems with signal connections, etc

To enable or disable a user action, you must alter the state of the
GtkMenuItem or toolbar button.

if you have multiple ways of performing the action, you need to alter all
widgets.

Doesn't even attempt to handle things like menu merging

Actions

Represent something the user can do
a callback (or more than one)
a label to use in menu items
maybe a shorter label for toolbar buttons
an icon
state (sensitivity, visibility, etc)

Can create an arbitrary number of menu items and toolbar buttons for an
action

properties and state of menu/toolbar items mirror the action they represent
set action to disabled -> all widgets representing the action are disabled

Different types of actions (extensible)

Action Groups

Actions are grouped together into groups of related actions
actions that should be available in the same context
global actions: quit, new, open, etc
document specific actions: save
mode specific: actions needed when in a particular mode

table editing in a word processor
drawing layer in a spreadsheet

Simple apps may have one action group

Complex apps will have multiple groups.

UI Merging (continued)

Orthogonal to actions
(some toolkits have actions, but do not provide a menu merge API).

Used to overlay a set of menu/tool items onto another set, and demerge
them later.

A tree of menus and toolbars is maintained, with names attached to
nodes.

Nodes map to actions
if action is provided by multiple action groups, top action group wins

Menu layouts described by XML files
based on a subset of the Bonobo UI format
translatable strings kept out of the XML file

Merge Example

file1.ui file2.ui

Root
 menu
 submenu: FileMenu
 menuitem: Open
 placeholder: TestPlaceholder
 submenu: HelpMenu
 menuitem: About
 dockitem: toolbar1
 toolitem: NewButton

Root
 menu
 submenu: FileMenu
 separator
 menuitem: Quit
 placeholder: TestPlaceholder
 submenu: EditMenu
 menuitem: Cut
 dockitem: toolbar1
 toolitem: OpenButton

Merged UI

Root
 menu
 submenu: FileMenu
 menuitem: Open
 separator
 menuitem: Quit
 placeholder: TestPlaceholder
 submenu: EditMenu
 menuitem: Cut
 submenu: HelpMenu
 menuitem: About
 dockitem: toolbar1
 toolitem: NewButton
 toolitem: OpenButton

UI Merging (continued)

Nodes merged based on names
if node has no name, the node type is used as the name

New nodes appended to containers
there is a flag to prepend instead

Placeholders are "virtual containers" used to add ordering

Putting it into Practise

Creating an action:

action = g_object_new(EGG_TYPE_ACTION,
 "name", "quit",
 "label", _("Quit"),
 "tooltip", _("Quits the application"),
 "stock_id", GTK_STOCK_QUIT,
 NULL);

Creating an action group:

action_group = egg_action_group_new("base_actions");
egg_action_group_add_action(action_group, action);

Putting it into Practise (continued)

Creating the EggMenuMerge object:

merge = egg_menu_merge_new();
egg_menu_merge_insert_action_group(merge, action_group, 0);

Adding some menus:

merge_id = egg_menu_merge_add_ui_from_file(merge, "menus.ui", &err);

Getting the menu bar:

menubar = egg_menu_merge_get_widget(merge, "Root/menu");

Removing menu items:

egg_menu_merge_remove_ui(merge, merge_id);

Accelerators

Accelerators are handled by the GTK accelerator map.

All actions are assigned an accelerator path of the form:

<Actions>/group-name/action-name

A shortcut is associated with this accelerator path.

All menu and toolbar items take on this accelerator path.

The GTK accel map code makes sure that the correct shortcut displays
next to the menu item.

This has the following benefits:

Two user interface elements representing the same action can be
activated with the same keyboard shortcut.

If dynamic shortcut editing is turned on, it will work correctly for EggMenu
based menus.

Accessibility Concerns

Hasn't been investigated much so far.

We have the ability to provide a lot more information to accessibility tools
compared to the older menu system:

If two widgets in the UI will perform the same action, we could make that
relation explicit.
As an alternative to navigating all the menus, an AT could provide a way to
trigger actions directly.

EggMenu To Do

API for adding dynamic menu items. Will probably look like this:
create a merge ID.
manually create a node in the menu tree using that merge ID.

Get more apps to test EggMenu API
Find out what is needed.
Make things more robust.

