
Future of Python Bindings

James Henstridge
james@daa.com.au

 Python bindings Features

 Provide an object oriented python interface to GTK+ and
related libraries.

 Takes care of reference counting and typecasting

 Complete enough to write full featured applications

 Used in several non trivial apps.

 Architecture of Current Bindings

 C extension module wraps most functions in GTK+,
making them callable from python code

 majority of C code autogenerated from defs format

 Python code wraps procedural interface in a set of python

classes that are used by the programmer

 Problems with Current Bindings

 Possible to have multiple wrappers for each GtkObject
 this model was chosen to avoid circular references

 object oriented interface built on top of procedural interface

 Non trivial ammount of python code to interpret on startup

(takes time)

 Not easy to extend for extra libraries of widgets

 Procedural intermediate interface is not used much -- just

takes up memory and diskspace

 The Rewrite

 Chose to rewrite bindings
 use ExtensionClass

 new defs file format

 new code generator

 remove the procedural interface

 add evil hack to give single wrapper per object

 Was not possible to keep compatibility with all the

changes.

 decide to target binding at GTK 2.0

 abandoned ExtensionClass based GTK 1.2 binding available on
extension-class-branch branch

 ExtensionClass

 Types defined in an extension module are not classes
(they can’t be subclassed)

 ExtensionClass is a module that allows creation of

extension types that behave like classes

 Written by Digital Creations, and used in Zope

 Allowed OOP interface to be implemented in extension

module -- less python code.

 Version used with pygtk has some modifications

 changes not merged back into official source (not for lack of trying).

 New Defs Format

 Defs files are used by language bindings as prototypes for
functions provided by the library

 composed of s-expressions

 used by Guile, Python, Perl and PHP gtk+ bindings

 Old defs format lacks some useful information

 only defines object heirachy, and functions

 doesn’t link functions to classes as methods

 New defs format has more information

 original specification by Havoc

 makes class <-> method relationships explicit

 more type information

 Takes guess work out of code generation

 Code Generator

 New code generation tools needed
 Take new style defs format as input

 Output C code that uses ExtensionClass

 Add .h to defs conversion script

 not perfect !

 Add extension module skeleton generator

 Easier to write bindings for new widget libraries

 maybe 1/2 to 1 hour for a moderate size library

 Code generation tools will be installed with PyGTK

 The Evil Hack

 makes sure that only a single wrapper will be used for a
particular object for the lifetime of that object

 If some python code holds a reference to the wrapper,

then the underlying object will not be freed

 Evil hack in destructor for wrapper that sometimes

resurrects wrapper.

 gets round circular reference problem

 Possible can make hack less evil using Python 2.1 weak

references

 GTK 2.0

 Base object system moved to glib
 base type is now GObject

 more flexible signal emission system

 UTF-8 as internal encoding for user visible strings

 New GDK targets (framebuffer, win32)

 New widgets

 GObject and PyGTK

 base object wrapper code separated out into the gobject
 module

 can be used independently of the gtk module

 Will support creation of new C level GObject types in the

future.

 Currently does not interract with python threading model

 GSignal and GClosures

 New signal system uses closure objects which wrap up a
function, user data and marshallers.

 gobject module allows connecting handlers to signals,

and adding signals to GObject classes.

 Signal system lets us set a closure as the class handler

for a signal type

 signals defined in python can do just as much as ones defined in C
code.

 Unicode

 Python 1.6 and 2.0 introduce unicode string type

 if a function expecting a normal string gets passed a

unicode string, it gets converted to the "default" character

encoding

 PyGTK sets default character encoding to UTF-8 at startup

 you can pass unicode strings to PyGTK functions/methods, and they
will be handled by GTK correctly

 Following code will work as expected:

 w = gtk.GtkLabel(u’2\u03D6r’)

 New GDK Targets

 GTK 1.2 has only an X11 backend

 GTK 2.0 introduces multiple backends

 PyGTK can be compiled with any of these backends

 tested with x11 and linux-fb

 should work with win32 as well

 Considering adding support for runtime selection of

backend

 Problems

 Requires unstable version of automake to build from CVS
 should go away when automake 1.5 is released

 Requires patching of python interpreter or relinking of

pixbuf loaders, pango modules and input method modules.

 libtool 1.4 (CVS version) required for relinking

 Does not work with python threading at the moment

 need a python threading guru to help fix this

 problems with Python global interpreter lock

 Todo

 complete bindings for all GTK APIs

 improve code generator

 documentation

 Gnome 2.0 bindings

 wait til bindings are more complete

