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Abstract

In the area of Markov Chain Monte Carlo spatial problems, not many general
purpose simulation systems exist. The GASP package is a framework for
writing simulations. GASP stands for Generating Algorithms for Spatial
Patterns. It is designed to handle as many different problems as possible. A
number of algorithms are distributed with the GASP framework, including a
simulation of the Strauss Process using the Metropolis-Hastings Algorithm.

GASP includes a graphical user interface that aids visualisation of an al-
gorithm, and sophisticated logging capabilities which allow for detailed post-
simulation analysis. It is implemented as a share package for the computer
algebra system GAP.
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Chapter 1

Introduction

1.1 Aims

In this project, I looked at the problem of implementing a framework for
simulating processes related to spatial statistics using algorithms such as the
Metropolis-Hastings algorithm.

The aim of the project was to produce a framework that could handle
as many different algorithms in the class as possible, while remaining simple
enough to be understood and easy to use. The result is the GASP package
[6], which stands for Generating Algorithms for Spatial Patterns.

1.2 The Choice of Language

Simulations of this type often require a lot of computation, so have tradi-
tionally been implemented in languages such as C or C++, due to the speed
and flexibility they give. Using such a language has drawbacks:

• a program would be written specifically for a particular problem, so
may require substantial modification to cover a different problem.

• knowledge of the C language, which includes many details, such as
memory management, that are not directly related to the problem.
This significantly raises the barrier for someone wanting to use such a
program. Also, C is perceived as being difficult to learn, which reduces
the value of a system which is aimed at mathematicians.

• as C is a compiled language, it takes more effort to make a change to
the algorithm, which can slow down development.

5



6 CHAPTER 1. INTRODUCTION

Rather than having many programs, each implementing their own algo-
rithm, it would be better to have a framework from which many different
algorithms could be explored with. That was the aim of my project.

An interpreted language was chosen because of reduced development over-
head, allowing more rapid experimentation and implementation of new algo-
rithms.

1.3 GAP

The language chosen for the implementation was GAP [2]. While GAP was
originally designed for work with group theory, a number of its features made
it an interesting choice for this class of problem.

While S-Plus [10] may be considered the obvious choice of language, it
suffers from some problems when used to run simulations that take a long
time. Problems related to instability and memory leaks are magnified during
long runs, which may lead to loss of data if the interpreter crashes. Also, to
someone who does not already know S-Plus, the syntax can be difficult to
learn.

Like S-Plus, GAP is an interpreted language. Its syntax was designed
with mathematicians in mind, so is quite easy for a new user to pick up.
GAP has some object oriented features, which were used when implementing
the GASP framework.

As well as having the rapid development advantages of interpreted lan-
guages, GAP also has interactive debugging features, and support for de-
signing graphical user interfaces that consist of menus and geometric shapes
drawn on a canvas.

Using GAP’s ability to pass functions as arguments to other functions,
GASP allows the user to hook into many different parts of the simulation
framework.

1.4 The Change Log

All the algorithms that I considered involved transitions between different
states of a configuration of some type of object such as points in the plane.
Quite often, it is these transitions, or changes in the configuration, that are
interesting.

In the GASP framework, these changes form an important part of the
simulation. Borrowing some ideas from the undo capabilities found in some
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software, all changes made to the configuration are encapsulated inside ob-
jects that hold all information to apply and revert the change in state.

As the amount of memory required to encode these these changes is gen-
erally smaller than the amount required for the configuration itself, it was
feasible to log a lot more information about what happened during the sim-
ulation than with systems where the complete state of the configuration was
logged. This unique feature of GASP gives users the ability to analyse a
simulation much more effectively, even after the simulation has completed.

1.5 Chapter Guide

The second chapter gives a brief overview of the mathematics behind some
of the problems that the GASP framework covers.

The third chapter covers the features of GAP that were useful when de-
signing GASP, and more detailed reasons why it was chosen as the language
to implement GASP in.

The fourth chapter is an introduction to the functionality provided by
the GASP framework. This chapter is aimed at users who are interested in
using the existing functionality in GASP, rather than extending it to handle
new algorithms.

The fifth chapter looks at the implementation of the framework, and how
to extend its functionality – both the algorithms that are supported and the
types of configurations that can be used in simulations.
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Chapter 2

Background of Class of
Problems

Some knowledge of the underlying probability theory is required to fully
understand the purpose and functionality of the software we developed. So
we will first look at some of the basic concepts and a few problems that
relate to the program. Some of the background material in this chapter can
be found in Spatial Statistics [7].

2.1 Markov Chains

2.1.1 Basics

A Markov Chain is a system with a number of possible states, and proba-
bilistic rules for moving between those states. As we move through time, we
make transitions between states. There are rules that govern to which state
we can move from the current one. The restriction on the rules is that given
the entire past series of states X1, X2, . . . , Xt, the choice of next state Xt+1

only depends on the current state Xt.

We can represent the probabilities for moving from a given state Xt to
each of the other states in the system by the vector Pt = (pt1, pt2, . . . , ptn),
where pti is the probability of moving from state Xt to state Xi. We can
collect the probability vectors for transitions from each state into a matrix:

P =


P1

P2
...
Pn

 (2.1)

9
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This matrix, known as the transition probability matrix, is stochastic. That is
the sum of the entries in each row is one (as the rows represent the complete
set of probabilities for moving to any state in the state space).

If the current state is randomly distributed in the state space according
to the probability row vector πt, we can get the distribution for the next
state by right multiplication by P:

πt+1 = πtP (2.2)

Similarly, we can get the distribution for the state after that by multiplying
the probability distribution vector by P again.

Some systems will converge towards an limiting distribution as they
progress in time. This distribution is often denoted π. The limiting dis-
tribution’s definition is as expected:

π = lim
i→∞

π0P
i (2.3)

If such a limit exists, then under certain circumstances π is an equilibrium
distribution, in which case it satisfies

π = πP (2.4)

This corresponds to the simple linear system π(P − I) = 0, which can be
solved to find the possible equilibrium distributions for the system.

2.1.2 The Monte Carlo Method

The Monte Carlo method is a method of solving problems using random
numbers. We can apply these ideas when simulating a Markov Chain system
[11].

If we know the state transition probability matrix P for a system, it is
possible to simulate a Markov Chain. The algorithm proceeds as follows:

Algorithm 1 (Monte Carlo)

1. Pick an initial state X0.

2. Given that the current state Xt = x, we generate the next state y from
the random probability distribution P (Xt+1 = y) = pxy, or the yth
column of the xth row of the transition probability matrix P.

3. Having picked the new state Xt+1, we go to step 2 and repeat to generate
the next state.
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2.1.3 Problems

Of course, Algorithm 1 is not practicable in all situations. Some possible
problems are:

• the state transition matrix P is not known, or would be too expensive
to calculate. In this case, we would still need to know the rule for
calculating the next state.

• the number of possible states in the system is infinite or very large (for
example, the states may represent the positioning of some points on
the plane).

In these cases, we might not be able to find the equilibrium distribution
for the system just by solving a system of linear equations, or may not get
a useful result. However, we may be able to simulate the system, which is
another way to get the desired information.

2.2 Using Simulation to Generate Distribu-

tions

For some probability distributions, it is not clear how to generate instances
of the distribution directly. Instead, we sometimes use an iterative Markov
Chain based algorithm that will converge to the desired distribution as equi-
librium.

This is similar to shuffling cards in order to randomise their order. We
know the distribution that we want – we just need to find a ‘shuffling’ al-
gorithm that will get us to that distribution. One such algorithm is the
Metropolis-Hastings Algorithm.

2.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov Chain system that can be
used to generate a realisation of a given equilibrium distribution.

It uses the idea that if the probability of the transition from state x to
state y, is the same as for the transition y → x, then the equilibrium distri-
bution will be maintained. This is known as detailed balance, as expressed in
Equation 2.5.

P(Xt = x and Xt+1 = y) = P(Xt = y and Xt+1 = x) (2.5)

It is achieved using the algorithm described below. It consists of a proposal
step and an acceptance step.
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Algorithm 2 (Metropolis-Hastings)

1. An initial state x is chosen.

2. proposal: a transition x → y is proposed. The transition is chosen
randomly according to some predefined random method with probability
pprop(x→ y).

3. acceptance check: the probability of accepting this transition pacc(x →
y) is calculated. With probability pacc(x → y), we move to state y.
Otherwise we stay at x.

4. go to step 2 and repeat.

According to these rules, the probability that the next state (xi+1) will be
y, given the current state (xi) is x, is:

ptrans(x→ y) = pprop(x→ y)pacc(x→ y) (2.6)

Applying the fact that P(A and B) = P(A | B)P(B) to both sides of
Equation 2.5 and substituting ptrans(x→ y) we get:

ptrans(x→ y)P(Xt = x) = ptrans(y → x)P(Xt = y) (2.7)

Substituting from Equation 2.6:

pacc(x→ y)pprop(x→ y)P(Xt = x) = pacc(y → x)pprop(y → x)P(Xt = y)
(2.8)

And rearranging, we get:

pacc(x→ y)

pacc(y → x)
=
pprop(y → x)P(Xt = y)

pprop(x→ y)P(Xt = x)
(2.9)

We need to choose values pacc(x → y) and pacc(y → x) that will satisfy

equation. The ratio pacc(x→y)
pacc(y→x)

is known as Green’s Ratio, or Rx→y. The

probabilities P(Xi = y) and P(Xi = x) are given in the desired equilibrium
distribution. The proposal probabilities pprop(x→ y) and pprop(y → x) were
chosen as part of the algorithm. Hence, we can calculate Rx→y.

For the Metropolis-Hastings algorithm, we set pacc(x→ y) as:

pacc(x→ y) = min({Rx→y, 1}) (2.10)

In the case that Rx→y > 1, Ry→x = 1/Rx→y < 1, so pacc(x→y)
pacc(y→x)

= 1
1/Rx→y

=

Rx→y. When Rx→y < 1, we get pacc(x→y)
pacc(y→x)

= Rx→y
1

= Rx→y. So this definition
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of pacc(x→ y) is consistent. For a system with an infinite number of states,
we can use the corresponding probability densities in place of the discrete
measures, and the same argument applies.

Of course, the Metropolis-Hastings Algorithm does not guarantee that we
will converge on the desired equilibrium distribution. Even in the case where
it does converge, it does not give any indication when we have converged to
the desired equilibrium distribution.

2.2.2 The Metropolis-Hastings Algorithm and Point
Processes

Point processes are spatial models of a collection of points governed by some
probability density [1]. Each state of the system is a configuration of points
within some region (or window) of the plane. It can be very difficult to realise
the process directly, so we use an algorithm that will converge to the desired
distribution, such as the Metropolis-Hastings algorithm.

For the proposal part of the algorithm, we will limit the possible state
transitions allowed to (a) adding a new point in a random location within
the window W , and (b) removing an existing point. All other transitions are
assigned a probability of zero. We will assign equal probability to adding
and removing a point (unless the configuration is empty, in which case only
an addition is possible).

We represent the state by the set of points on the plane x = {x1, . . . , xn}.
The probability density of the proposal to add a particular point y to the
configuration somewhere in the window of area |W | is pprop(x→ x ∪ {y}) =
1
2

1
|W | . Similarly, the probability of proposing to remove a particular point y

is pprop(x→ x\{y}) = 1
2

1
n(x)

where n(x) is the number of points in the set x.

Hence, for adding a point, Green’s Ratio becomes:

Rx→x∪{y} =
|W |

n(x) + 1

f(x ∪ {y})
f(x)

(2.11)

and for removing a point, we have:

Rx→x\{y} =
n(x)

|W |
f(x\{y})
f(x)

(2.12)

where f(x) is the density function for the equilibrium distribution.

Hence, the acceptance probability pacc used will be min(Rx→x∪{y}, 1) or
min(Rx→x\{y}, 1) respectively.
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2.3 The Strauss Process

The Strauss Process [8] is an example of a point process that can be simu-
lated using the Metropolis-Hastings algorithm. The density function for the
Strauss Process is:

f(x) = αβn(x)γs(x) (2.13)

where x and n(x) are defined as in Section 2.2.2, and s(x) is defined as the
number of ‘close’ pairs of points separated by no more than a given distance
r.

The symbols in the density function of Equation 2.13 are:

α is a constant to normalise the function to ensure that it is a density func-
tion.

β is a parameter that measures the ‘intensity’ . It affects the number of
points we would expect to find in the configuration.

γ is the interaction parameter:

• If γ = 1, then the density function does not depend on neighbour
relationships.

• If 0 < γ < 1, then larger spacing of the points is favoured, as large
s(x) gives small γs(x).

• If γ > 1, close clustering of a large number of points leads to a very
large γs(x). In fact, with γ > 1, we cannot find an α to normalise
the density, so a Strauss Process does not exist for this case.

In order to simulate the Strauss Process using the Metropolis-Hastings al-
gorithm, we must calculate the acceptance probabilities for proposed states.
For this, we need to know Green’s Ratio Rx1→x2 , which required the calcu-
lation of the ratio f(x2)/f(x1). This ratio is:

f(x2)

f(x1)
=
αβn(x2)γs(x2)

αβn(x1)γs(x1)
= βn(x2)−n(x1)γs(x2)−s(x1) (2.14)

In the case of adding a point, n(x ∪ {y})− n(x) = 1, and for removing a
point, n(x\{y})−n(x) = −1. It is also fairly obvious that s(x∪{y})−s(x) is
the number of points in x that are at most a distance of r from the new point
y. We will denote this number s(x, y). We can see that s(x\{y}) − s(x) =
−s(x, y) if we do not count y when calculating s(x, y).

This is enough information to calculate the Green’s Ratio for both adding
and removing points, and hence the acceptance probabilities for the propos-
als:
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• add point:

Rx→x∪{y} =
|W |βγs(x,y)

n(x) + 1
(2.15)

• remove point:

Rx→x\{y} =
n(x)

|W |βγs(x,y)
(2.16)

2.4 The Widom-Rowlinson Bivariate Process

The Widom-Rowlinson Bivariate Process [12] is another process based on
configurations of points that we consider. It can be thought of as a simulation
of two different types of particles (‘red’ and ‘black’) in some region of the
plane, and particles of opposite type cannot get closer than some predefined
distance r. I refer to this process as the Red-Black process in later chapters.

In this system, we introduce the concept of marking the points in the
configuration. A mark is an attribute of the point that is associated with a
point. In many problems, we may think of a mark as a colour for an object.
Of course, for some systems, we may have more than one non mutually
exclusive mark for a point.

The configuration in this process is made up of two collections of points
inside the simulation window. One collection is all the red points and one is
the black points. The algorithm uses parameters µ and ν as means per unit
area of Poisson distributions for the two collections of points.

The algorithm for this process can be represented as a two phase process:

Algorithm 3 (Widom-Rowlinson)

1. remove all the black points from the configuration.

2. we pick a random number using a Poisson distribution of mean ν times
the area of the window. This is the number of new black points we
propose to add to the system.

3. for each of the points we propose to add, we choose a random location
for the point within the simulation region. If the point is no closer
than r to any of the red points, then we add it to the configuration.
Otherwise, the point is discarded.

4. now repeat for the red points, using µ as the Poisson mean.
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This process is then repeated. As the reader can see, we end up with
two collections of points separated by the distance r. The distribution of
black points in all parts of the simulation window with no red point closer
than r is Poisson distributed with a mean ν times the area of this region.
Similarly, the red points are Poisson distributed in the region defined by the
black points.

Once the simulation has completed, we may only be interested in one of
the collections of points.

Once again, we are left with the question of when the simulation is ‘fin-
ished’.

2.5 Glossary

Some of the terms introduced in this chapter are used later on when de-
scribing the software and the simulation algorithms we implemented. The
important ones are listed below.

limiting distribution is the probability distribution that the system moves
toward as the simulation continues. Such a distribution may not exist
for a particular Markov Chain.

Monte Carlo method is a method of solving deterministic problems using
random numbers.

Metropolis-Hastings algorithm is an algorithm used to implement a
Markov Chain system that will converge on a desired probability dis-
tribution as the equilibrium distribution.

configuration refers to the arrangement of objects, along with any other
state information that represents the state in the algorithm.

configuration objects (or just objects) are the objects that make up the
configuration. In many of the problems, these are just points, but in
others they may be lines or objects of some other shape.

marks are some attributes assigned to an object. In some problems, we may
want to group the objects in the configuration. We do this by adding
marks to the objects. These may be multi valued (such as the colour
of the object), or boolean valued. An object may carry more than one
mark.

proposals refer to changes proposed to be made to a configuration. This is
the first part of the Metropolis-Hastings algorithm.
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acceptance is the act of accepting a proposal, and modifying the state of
the configuration accordingly.

rejection is the act of discarding a proposal and leaving the configuration
in its existing state.



18 CHAPTER 2. BACKGROUND OF CLASS OF PROBLEMS



Chapter 3

Features of GAP

3.1 Requirements

When deciding on what language to use for the simulation system, there were
a number of features that we were looking for.

3.1.1 Features

When choosing the language to implement GASP in, there were a number
of required and desired features we looked for:

• The language must allow rapid development. It is important
that the language be quick to use, so that end users of GASP can easily
experiment with the algorithms they are working on. This requirement
is most easily met by using an interpreted language.

• must be easy to learn and have a clear syntax. Ideally, it should
be very easy for a new user to start extending GASP to handle new
algorithms. Also, programs written in the language should be easy for
others to be able to read without a full knowledge of the language.

• must be fast and stable. Programs written in the language must
run fast. Stable means that programs written in the language should
not crash half way through a simulation, causing all information up to
that point to be lost.

• should have some graphics capabilities. It would be nice to be
able to design a graphical user interface to run a simulation in.

19
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• should make it easy to debug programs. The language should
make it easy to debug errors. That is, when an error occurs, rather
than just exiting, it would be nice if it were possible to find out what
went wrong. This feature is more important to people trying to extend
the GASP package, rather than those using existing algorithms.

3.1.2 The Choice of Language

The GAP language was chosen because it met these criteria. S-Plus was
not chosen because it has had problems with long running programs in the
past, where its memory consumption would increase with time, and S-Plus
occasionally crashes under some conditions.

Another language that was considered was Python [9]. Python shares a
number of these desirable features with GAP, but during tests it was found
to be slower than GAP. This is most likely caused by the different types of
memory management performed by the two languages. Also, the graphical
capabilities of GAP are more convenient for use in GASP than those available
for Python.

A more detailed summary of the relevant features of GAP follows in the
next section.

3.2 Relevant Features of GAP

The aim of this section is to highlight some of the features of the system
GAP, which we used to develop GASP. This section is not intended to be
a substitute for the GAP documentation or as a tutorial for the language.
Rather, it should familiarise the reader with some of the basic concepts that
we use in the remaining chapters.

GAP stands for Groups, Algorithms and Programming. Development
started in 1985 at Lehrstuhl D für Mathematik, RWTH-Aachen by a group
led by Professor Joachim Neubüser. Since then it has gone through a number
of rewrites, and is now maintained by an international group of developers
coordinated from Saint Andrews. Although it was not specifically designed
for the types of statistical problems we considered, a number of its features
made it a very useful tool for our project. GAP is freely available from the
program’s web site [2].

Once installed, GAP can be started from the shell prompt with the fol-
lowing command:

$ gap
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This will start up GAP, and print a gap> prompt where you can enter
GAP commands to execute.

3.2.1 General Description

GAP was designed as a language for use by mathematicians, so has a syntax
that corresponds fairly simply to written mathematics. This reduces the
perceived learning curve required to use the system, which could be a deciding
factor for a new user when considering whether or not to use GASP.

GAP consists of a number of components centered around a small kernel
which is written in C. The kernel is implemented in the main GAP executable,
and is comprises:

Language - the parser for the GAP language combined with the interpreter
which is responsible for executing GAP programs. This also includes
the base of the GAP object model, as described in Section 3.2.4.

Memory management - the code that handles all memory allocation and
deallocation in GAP. GAP uses a form of garbage collection, so users
do not have to concern themselves with explicitely allocating or freeing
memory in their program.

Selected objects and operations - a number of functions and data types
which are impossible or very inefficient to implement in the GAP lan-
guage. These include implementations of the base data types such as
integers, lists and some other data types, along with some of the basic
operations for those types.

On top of this kernel are the standard library, some data sets and the
documentation. The standard library takes the primitives defined inside the
kernel and builds them up to create data types that can be used to work on
various mathematical problems.

There are a number of data sets (the small groups library, etc) distributed
with GAP, which can be accessed from the language. These are not relevant
to the problems we are interested in here.

GAP contains a builtin documentation system, so the interpreter can ex-
tract a section from a specially formated TEX documentation file for a par-
ticular function. This is then displayed to the user, the format depending
on the way GAP was invoked. This yields a very simple way to provide both
online help for the functions in GAP, and produce a high quality typeset
version of the library reference.

In addition to the standard library, GAP provides a way for any user to
contribute packages known as share packages to be used. The use of share
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packages makes it very easy to package together a number of functions and
data structures together for distribution. Official share packages are refereed.

For GASP, most of the standard library and all the data sets were not
used. However, a lot of the infrastructure these components were built on
was used.

3.2.2 Interpreted Nature

GAP is an interpreted language. If a language is not interpreted, a user
writes a program, then compiles the program to machine code, executes the
program to test it, and debugs it if any errors occur. If errors are found,
the user must recompile and test the application again. With an interpreted
language however, the compile stage of the normal write → compile →
test → debug cycle gets removed, which speeds up development.

GAP is also interactive. This means that a user can enter a command at
the gap> prompt, GAP evaluates the command and prints the result. This is
the usual read → eval → print loop found in many interpreted languages
such as python or the UNIX shell.

Often, interactive languages reduce the experimentation part of the de-
velopment process down to just test → debug. The above simplification
of the development cycle leads to fast experimentation and fast development
when combined with the fact that memory management can be ignored.

Of course, the interpreted nature of GAP can lead to less than optimal
speed. In most cases, the tradeoff against shorter development time is sen-
sible. In the cases it is not sensible, a GAP to C translator is available that
allows compilation of GAP code for extra speed.

3.2.3 GAP Features

As well as the many features related to group theory, GAP contains many
features found in most general purpose languages. Many of these were nec-
essary to build up the mathematical features of the language. These include
a number of data types including some aggregate data types, and many of
the normal control structures found in most programming languages.

Basic Data types

As well as the more specialised group theory types found in the standard
library, there are a number of general purpose types. These include integer,
rational and floating point numbers. Integers and rational numbers convert
to an arbitrary precision representation if they grow too large.
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At the time of writing, the floating point support is not well integrated
into the GAP system. While it is possible to perform binary operations on
two floats, sometimes an error occurs when the same operation is applied to
a float and a non-float. Also, not all functions accept a float where some
other type of number is expected due to these problems. It is expected that
these problems will be resolved in the future.

In addition to these basic types, GAP provides a number of aggregate
data types. The main ones are lists and records.

Lists in GAP can be heterogeneous. That is, a list can contain elements
of more than one type. Lists can be expanded and contracted as needed
at runtime using the Append and RemoveSet functions. You can perform
complex indexing operations on a list. For example, if we have a list initialised
as list := [7,8,9,10,42,11], then the expression list{[1,3,5]} returns
a list containing the first, third and fifth elements of the initial list, which is
[7,9,42].

Records in GAP are similar to structs in C or records in Pascal. They
provide a way to group a number of named variables together.

These aggregate data types can be nested to produce more complex types
as required. GAP also provides a way to objectify lists and records, which
gives you even more control over how they are handled. This is covered in
the next section.

Control Structures

GAP provides many of the standard control structures found in most lan-
guages. These include the standard if .. then .. else .. end if

conditional statements, as well as statements to iterate over the members of
a list. There are also the more general while and repeat .. until loops.

For more information, see the GAP reference manual [3].

3.2.4 The GAP Object Model

GAP provides the ability to create hierarchies of types similar to what is
found in many object oriented languages. We can create instances of these
types by objectifying records or lists.

The main reason for creating these objectified types is GAP’s operation
system. Operations are analogous to methods in most object oriented lan-
guages and provide a way of creating polymorphic functions. That is, func-
tions that perform different actions depending on the types of the arguments.

GAP also provides the ability to overload the standard operators. This
means that you can implement the standard operators such as +, −, ∗, =
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and ≤ for any new object types created in GAP. Operator overloading in
GAP uses the operations system described above. This means that we can
provide different implementations of the operations depending on the types
of the operands.

Although GAP appears to be purely procedural, the combination of objec-
tified types and operations gives as much power as found in more traditional
object oriented languages. The difference in syntax is not expected to be a
problem, as most users of GASP will probably not have much experience in
object oriented languages to start with.

3.2.5 Functions

GAP treats functions like any other variables. They can be passed as an
argument to another function, or returned from a function. In fact, the
usual way of defining a new function is through an assignment to a variable.

Similar to functions in languages like Pascal, a GAP function has access
to the variables in the environment where it was defined. If we define one
function within the body of another function, it will have access to the local
variables of the enclosing function as well as those in the global name space.
A name space refers to a mapping between variable names and their cor-
responding values. Usually a particular name space is only used in certain
contexts, but variables in the global name space are available from all parts
of the program.

When combining access to the defining environment of a function with
passing function variables as arguments to other functions, it is not quite
clear what a language should do. Consider the following fragment of GAP
code:

g := function ()
local i , h ;
i := 0 ;
h := function ( ) ;

i := i + 1;
return i ;

end ;
return h ;

end ;
f := g ( ) ;

This creates the function f. When we exit from the call of g, the local
variables that make up the environment in which the function h was defined
are preserved. The other common behaviour in this situation is to not give
the function f access to g’s local variables, or not preserve their values across
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calls to g. GAP’s behaviour was very convenient when writing parts of GASP.
Successive calls to f will result in a series of positive integers being re-

turned. If we create another copy of f by calling g again, the series returned
by the copy will be independent of the first f. In effect, each f has a copy of
the variable i.

Such an f is known as a closure. That is, it is a combination of the
function and the environment it was defined in.

We used this functionality fairly extensively inside GASP.

3.2.6 XGAP

XGAP is a combination of a share package for GAP along with a wrapper
front end that provides graphical capabilities using the X Window System.
XGAP can be started by running the xgap command. This will open an X
window for the console and load up the share package part of XGAP.

The xgap share package provides the ability to create graphic sheets which
act like a canvas on which various geometric figures such as rectangles, lines
and circles can be drawn. These graphic sheets handle all redraws for the
canvas, so a program does not need to worry about redrawing the shapes
after the canvas gets obscured. XGAP also provides the capability to save
the contents of a graphic sheet to an encapsulated PostScript (EPS) file which
can then be printed or included in a document, as I have done so in Figure
5.1.

Graphic sheets can also take mouse input from the user, which is passed
back to the program, and add extra menu items to the menu bar at the top
of the graphic sheet.

XGAP opens a new window when you ask for help on a particular topic,
and provides some cross referencing support so you can click on other topic
names in the help window.

We use XGAP’s graphics abilities for visualisation in GASP.

3.2.7 More Information

This section is not meant to be a complete description of the GAP system.
Comprehensive documentation is distributed with the GAP system, consist-
ing of tutorial, programming, extension and reference manuals and online
help. The tutorial [4] and reference [3] manuals are good places to start
learning about GAP.

Online help is available for almost all GAP functions by typing ?function-
name at the gap> prompt. GAP also supports tab completion, which can be
used to find appropriate functions. By typing in part of a function name,
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and pressing the tab key, either the name is completed or a list of names
matching what was typed is listed.

3.2.8 Problems With GAP

When working with GAP, there were a few problems that surfaced. The
first was the lack of floating point support in the released version. For work
on GASP, I was able to obtain the unreleased development version of GAP,
which has some floating point support built in. As floating point support is
not very well integrated, into GAP at present, its use inside GASP has been
quite limited.

The other problem with GAP is the lack of multiple global name spaces.
This prevents the programmer from creating functions that are private to
a particular share package. Although this did not cause any big problems
when developing GASP, it means that people extending GASP have to be
careful not to use function names that may be used in other GAP packages,
as it may produce unpredictable results. Multiple global name space support
is another feature that is planned for GAP in the future.

Although GAP has a number of problems, overall it proved to be a useful
tool to use as a base for GASP.



Chapter 4

User Description of GASP

4.1 Introduction

This chapter gives an overview of GASP aimed at people who wish to use
the existing functionality provided by GASP.

As GASP makes use of the graphics capabilities of the XGAP share pack-
age, the user must start XGAP in order to use the system. This is achieved
by running the xgap command at the shell prompt. After XGAP has started
and gap> prompt is shown, GASP must be loaded. This is achieved with the
RequirePackage command:

gap> RequirePackage("gasp");

true

Here, the lines that do not start with gap> represent the output from GAP.
At this point, the user may start using GASP.

4.2 An Example of GASP

To get a feeling of how to use GASP, it is best to look through an example.
The following example brings up a window from which the user can simulate
the Strauss Process using the Metropolis-Hastings algorithm. The example
demonstrates setting up the algorithm for use with the simulation framework,
and observing the behaviour through the graphical user interface (GUI).

gap> # create a 300x300 configuration of points

gap> config := PointConfiguration(0,0,300,300);

PointConfiguration( 0, 0, 300, 300 )

gap> # create the appropriate proposal function

27
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gap> propose := CreateSimpleFlipPropose(1/2);

function( cnf ) ... end

gap> # create the appropriate acceptance check function

gap> check := CreateStraussCheck(1/900, 9/10, 15);

function( cnf, change ) ... end

gap> # create a window to run the simulation in

gap> GUISimulate(config, "Strauss", 300, 300, propose, check);

<graphic sheet "Strauss">

First we create an object config to hold the state of the simulation,
which is a configuration (ie. finite, unordered list) of points on the plane.
Next, proposal and acceptance check functions for the desired algorithm are
created. The exact use of these is covered in Section 4.4.

Finally, we invoke the GASP command GUISimulate, which brings up a
window from which we can observe what is going on. We also tell GAP to
output log messages from the simulation to the console. The window should
look similar to the one in Figure 4.1. The screen shot differs from the window
initially shown by GUISimulate because the simulation has been running for
a few iterations.

4.3 Using the Graphical User Interface

The graphical user interface (GUI) offers a nice way to experiment with
the simulation framework. It is the window displayed when GUISimulate is
called, as shown in Figure 4.1. The main area of the window displays the
current state of the algorithm. In the example, the display area starts out
empty, and as the simulation runs, it fills up with points.

There is a menu bar along the top of the window, from which a user can
control the simulation. The first item on the menu bar is the standard XGAP
‘Sheet’ menu. It contains menu items to save the contents of the display area
as a postscript file, and to close the window.

The second item opens the ‘Iterate’ menu, which is specific to GASP. It
contains options to let the simulation run for various numbers of iterations.
The display area updates after the desired number of iterations have been
made.

In some cases, running the simulation for a particular number of iterations
is not what is desired. Sometimes a user may want to run the simulation until
a particular event occurs. This can be achieved with the ‘Condition’ menu.
(To understand the condition menu fully, see Section 4.4 which describes the
simulation framework). The conditions in the ‘Condition’ menu on which
GASP can pause the simulation are:
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Figure 4.1: The simulation display window

Until first acceptance iterates until a proposition is accepted, after which
the simulation stops.

Until first acceptance (max 100 iter) is like above, but also stops if
100 iterations are made without an acceptance. This option is useful
in cases where it is not guaranteed that a proposition will ever be
accepted.

Until first rejection iterates until a proposition is rejected, after which it
stops.

Until first rejection (max 100 iter) is like above, but also stops if 100
iterations are made without a rejection.
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Until propose add object (max 100 iter) iterates until we get an ‘add
object’ proposal, or 100 iterations are made, whichever comes first

Until propose delete object (max 100 iter) iterates until we get a ‘de-
lete object’ proposal, or 100 iterations are made, whichever comes first.

4.4 General Framework Used in Simulations

GASP provides a generic framework for running certain algorithms that can
be expressed according to the flowchart describing the framework shown in
Figure 4.2.

Propose new state
based on current state

Calculate probability
of accepting proposed

state

Accept
with the calculated

probability 

Reject

Accept

Set current state
to initial state

Make proposed state
the current state

Continue
Simulation?

Yes

No

Stop

Figure 4.2: Simulation flow of control

The framework can also be described by the following set of rules:

1. propose a change to the current configuration.

2. calculate the acceptance probability for this proposed change. That is,
the probability of applying the proposed change.
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3. make a random decision whether to accept or reject the proposed
change according to the acceptance probability calculated in step 2.

• if it is accepted, apply the proposed change to the configuration.

• if it is rejected, discard the proposed change.

4. check to see if the simulation should continue. If so, go to step 1 and
repeat. If not, then the simulation stops.

The GASP simulation framework can run multiple types of algorithms.
The different algorithms are defined by the combination of a proposal function
and an acceptance check function. These two functions are passed to the
GUISimulate function in order to run the algorithm.

In the case of the Strauss Process example above, we used a very simple
proposal function which would either propose adding a random new point
or removing a random existing point, with equal probability. Instead of
writing the implementation of this function in full in the example, we used
the CreateSimpleFlipPropose command, which returns a proposal function
which adds a point with the desired probability.

For the acceptance check function, we want to use the reference formula
used when simulating the Strauss Process with the Metropolis-Hastings algo-
rithm, except that we calculate it in terms of the proposed next state, rather
than the current one. Once again, we use a convenience function to im-
plement this: CreateStraussCheck. This function returns the appropriate
acceptance check function.

The other parameters passed into the main simulation function GUI-

Simulate are the Configuration object, a continue checking function and
optionally a file to log the progress of the simulation. The configuration ob-
ject is simply the object that holds the state of the simulation. This is mainly
the collection of objects (such as points) that make up the configuration. In
the Strauss process example above, we used the PointConfiguration that is
part of GASP as described in Section 4.5.1, which represents a configuration
of points.

Deciding whether or not to continue the simulation is controlled from the
GUI through the ‘Iterate’ and ‘Condition’ menus. More specialised control
over deciding whether to continue is possible, provided the user is willing to
write some simple GAP code.

It is possible to log the progress of the simulation if desired. This is
achieved through the seventh optional argument to GUISimulate. To send
the log messages to the GAP console, the user can pass OutputTextUser()

as this argument. To append log messages to the file filename, the user can
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pass OutputTextFile(filename, true) as the argument. If the argument
is omitted, then log messages are not recorded.

4.5 Predefined Functionality

GASP supports a number of Configuration object types and provides sev-
eral proposal and acceptance check functions. If the algorithm the user is
interested in is supplied by GASP, then it is very easy to use GASP.

4.5.1 Configurations

A configuration object stores all information about the current state of a
simulation. At a minimum, this is a collection of objects in the state, but
may hold more information.

Configurations implement a number of operations that can be used to
manipulate them (for example, counting how many objects are in the con-
figuration or choosing a random object in the configuration). This makes it
possible to implement algorithms that are independent of the actual config-
uration type used.

Currently, GASP provides configuration implementations for use in both
point process and line process simulations. These are called the Point-

Configuration type and LineConfiguration type.
The PointConfiguration object can be created using the following com-

mand:

con f i g := PointConf igurat ion ( sx , sy , swidth , she ight ) ;

The first four parameters specify the top left corner (assuming the origin
is in the top left corner of the GUI window, consistent with the coordinate
system used for the computer screen) and the dimensions of the region the
simulation will occur in.

The LineConfiguration object can be created in a similar fashion:

con f i g := LineConf igurat ion ( sx , sy , swidth , she ight ) ;

The parameters have the same meaning as for PointConfiguration.

4.5.2 Proposal Functions

The proposal function for a particular algorithm is responsible for proposing
changes to the state of a configuration. Given the current state of a con-
figuration, it will return a proposed change (for example, adding a point).
Usually it takes into account the current state of the configuration, but may
also use the iteration number, some other counter or the output of a random
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number generator to decide on the proposal. GASP provides a number of
predefined proposal functions that may be useful for the user’s simulation.

As most proposal functions have several parameters, it could potentially
be time consuming to rewrite the function each time the user wanted to
change a parameter. To save time, function factories are provided for the
proposal functions that GASP provides. Function factories are simply func-
tions that return functions. These factories provide an easy way to create
members of families of proposal functions.

CreateSimpleFlipPropose

CreateSimpleFlipPropose creates proposal functions that choose between
adding a randomly placed new point or removing an existing point at random.
The probability of proposing to add a new point is passed in as a parameter to
CreateSimpleFlipPropose. A proposal function of this type can be created
like this:

propose := CreateSimpleFl ipPropose ( prob ) ;

In the case that there are no points in the configuration, this proposal func-
tion always proposes to add a new point. This proposal function is appro-
priate for point processes using the Metropolis-Hastings algorithm.

CreateRedBlackPropose

CreateRedBlackPropose creates a proposal function that implements the
Widom-Rowlinson ‘Red-Black’ point process as described in Section 2.4. For
a full description of how the Widom-Rowlinson process is implemented in
the GASP simulation framework, see the example in Section 5.2.5.

The user can create the proposal functions of this type with the following
command:

propose := CreateRedBlackPropose ( radius , mean red ,
mean black ) ;

The first argument is the minimum required distance between points of dif-
ferent colours. The second is the mean for the Poisson distribution that is
used to select the number of red points to add in one phase of the simulation.
The third argument plays a similar role for the black points.

4.5.3 Acceptance Check Functions

The acceptance check function for an algorithm is responsible for calculat-
ing the probability of accepting the proposed new state for the configura-
tion. This decision will generally be made based on the current and pro-
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posed change. Based on the probability calculated by the acceptance check
function, GASP will make a random decision whether or not to accept the
proposed change.

There are a number of check functions provided with GASP. Similar to
the proposal functions, factories are provided to make experimentation more
convenient.

CreateStraussCheck

The function CreateStraussCheck creates acceptance check functions that
implement the formula for the acceptance probability for the Strauss Process.
The user can create a Strauss process acceptance check function with the
following command:

check := CreateStraussCheck ( beta , gamma, radius ) ;

The arguments beta and gamma passed to this function are the β and γ
parameters in the density function, and radius is the distance r, used when
calculating s(x, y), as described in Section 2.3.

CreateFixedCheck

The function CreateFixedCheck creates an acceptance check function that
always returns a particular probability regardless of the current state or pro-
posed change. This type of acceptance check function may be created with
the following command:

check := CreateFixedCheck ( prob ) ;

For this function, prob is the probability that is returned.

4.5.4 Problems Covered

By combining a proposal function and an acceptance check function as ar-
guments to GUISimulate, a number of algorithms can be simulated when
passed to GUISimulate. As seen in the example at the start of the chap-
ter, CreateSimpleFlipPropose and CreateStraussCheck can be used to
simulate a Strauss Process using the Metropolis-Hastings Algorithm.

The CreateRedBlackPropose and CreateFixedCheck functions can be
combined to simulate the Widom-Rowlinson point process. In this case, we
use a probability of 1 as the parameter for CreateFixedCheck.
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4.6 Summary

With the information in this chapter, the reader should be able to use the ex-
isting proposal and acceptance check functions to simulate some algorithms.
If an algorithm is not covered by the provided functions, then the user must
be know how to write simple GAP functions and have a knowledge of the
GASP programming interfaces. This is covered in the next chapter.

If the algorithm requires new configuration type, then a more detailed
knowledge of GAP and the GAP object model is required. This is also covered
in the next chapter.
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Chapter 5

Implementation

This chapter covers the development of the GASP framework, along with in-
formation about how to extend GASP to handle new algorithms. It assumes
some knowledge of programming in GAP.

5.1 Development

5.1.1 First Cut

When developing the GASP simulation framework, the aim was to have a
simulation framework that could handle as many different spatial statistical
problems as was reasonable while keeping the framework simple and easy to
understand.

It is also desirable that code written for one problem should be usable in
similar problems.

To achieve these goals, I first needed to write a general representation
for configurations of geometric objects. This led to the creation of the
Configuration and PictureObject types. The PictureObject type rep-
resents the geometric objects that make up the configuration (the name
PictureObject was chosen because Object was already taken by GAP).
Instances of these types cannot be created directly. They are abstract, so
a user must use a derived type. For example, the PointConfiguration and
Point types.

A first approach would be to adopt a simple framework that resembled
the basic Metropolis-Hastings algorithm. The framework can be written
in terms of the Configuration and PictureObject types. Parts of the
framework that are specific to a particular algorithm are implemented as
calls to functions a user must provide. This gave us the following basic

37
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framework:
Given a configuration to store the state of the simulation, and user sup-

plied functions propose and acceptancecheck that implement the algo-
rithm, perform the following steps:

1. call the user supplied function propose to propose a change to the
configuration.

2. call the user supplied function acceptancecheck function to calculate
the probability of accepting the proposition.

3. make a random decision whether to to accept with the probability
calculated in the previous step:

• if accepted, make the change to the configuration

• if rejected, do nothing

4. repeat from first step

At this point, the return value of the function propose is limited to
proposing to create a new object or delete an existing object. These are rep-
resented by lists of length 2 – the first element being a constant representing
the type of change, and the second being the object that we are adding or
deleting.

This simple framework exhibits a number of limitations. For instance,
the propose and acceptancecheck functions are implemented in terms of
the particular Configuration used in the algorithm. This means that those
functions would need to be modified if we wanted to run the same algorithm
with a different Configuration. This framework also limited the allowable
propositions to adding and removing points.

5.1.2 Virtualisation

In order to get around the first problem, I virtualised most of the actions that
are performed on Configurations and PictureObjects. This means that
rather than accessing the configuration directly, the algorithm calls functions
provided with the configuration implementation that perform the actions.
We achieve this through a number of GAP operations. While it simplifies
the job of the person implementing new algorithms, this change adds the
burden of implementing a number of operations (such as calculating the
distance between two objects, counting objects in a configuration, checking
for objects close to a particular object, etc). As I expect that there will be
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many more algorithms implemented for the framework than configuration
types, the tradeoff seems appropriate.

This made it possible to implement new algorithms in such a way they
could be used with different types of configurations without modification,
which also gives more flexibility to change how various parts of the framework
are implemented.

The list of operations for use when writing proposal or acceptance check
functions is covered in Section 5.2

5.1.3 Change Objects and the Change Log

In order to lift the restriction on the allowed types of change that may be
made to configurations, rather than using a two element list, I created a new
type called a Change object. The idea behind Change objects in the simula-
tion framework is very similar to the way undo capabilities are implemented
in many applications. These objects package up all the information about
how to apply themselves to the configuration, and how to revert any changes
they made to the configuration.

We could now modify the simulation framework to look like:

1. call the user defined propose function, which returns a Change object
representing the proposed change to the configuration.

2. apply the Change object to the configuration.

3. call the acceptancecheck function to calculate the probability of ac-
cepting the change.

4. make a random decision whether to accept the change with the calcu-
lated probability. If the proposal is rejected, revert the change.

5. go to step 1 and repeat.

All information about an iteration is written to a log file. This includes
the change that was proposed, the calculated probability and whether the
proposal was accepted. More information about the log file is found in Section
5.4.1

5.2 Implementing New Algorithms

This section covers the parts of the GASP application programming interface
required to write new proposal and acceptance check functions. The user will
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need to have a basic knowledge of the GAP syntax along with knowledge of the
following programming interfaces. The GAP Tutorial [4] is a good introduc-
tion to using the GAP language. This information is necessary for simulating
processes that are not covered by the existing algorithms distributed with
GASP.

More specifically, the user will need to know how to write functions and
use simple programming structures.

5.2.1 Configuration Operations

In order to implement the proposal and acceptance check functions, it will
be necessary to make calculations based on a given configuration. A number
of operations are provided to access the configuration so that the algorithms
the user implements are not dependent on a particular configuration imple-
mentation.

These operations have to be implemented for each configuration type.
Here is a list of the operations most useful when implementing proposal and
acceptance checking functions:

ConfigWindowArea

The ConfigWindowArea operation can be used to calculate simulation re-
gion. This is used in a number of problems when calculating acceptance
probabilities:

area := ConfigWindowArea ( con f i g ) ;

Here, config is a Configuration object.

RandomNewObject

In the proposal function for a particular algorithm, it will usually be necessary
to create new objects for the configuration. The operation RandomNewObject

can be used to do this:

obj := RandomNewObject ( con f i g ) ;

ChooseRandomObject

ChooseRandomObject picks a random existing object from a given configu-
ration. This might be useful in a proposal function.

obj := ChooseRandomObject ( con f i g ) ;
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CountObjects

The operation CountObjects counts the total number of objects in a given
configuration. It may be useful when calculating the acceptance probability.

num := CountObjects ( con f i g ) ;

CountObjectsWithMark

For algorithms where we work with objects with marks attached (marks
were defined in Section 2.5), it may be useful to count the objects that have a
particular mark set. This is done with the operation CountObjectsWithMark:

num := CountObjectsWithMark ( con f i g , markname ) ;

The argument markname is the name of the mark that must be set on the
objects that are being counted. For more information on the marks interfaces,
see Section 5.2.2.

GetObjectsWithMark

Some algorithms may require a list of all the objects that have a particular
mark. This can be achieved with the operation GetObjectsWithMark:

o b j e c t l i s t := GetObjectsWithMark ( con f i g , markname ) ;

The argument markname for this function has the same meaning as the one
in the CountObjectsWithMark operation.

CloseObjects

For some algorithms we require some information about how many objects
in the configuration are within a certain distance of a particular object. The
CloseObjects operation is used to calculate this:

num := CloseObjects ( con f i g , ob ject , rad ) ;

This is the function is basically the same as the function s(x, y) used in the
calculation of the acceptance probability of the Strauss Process. As with
s(x, y), if object is already part of the configuration, then it will not be
included in the count.

CloseObjectsWithMark

For algorithms that involve marks, it may be necessary to perform a count
as in CountObjects, but only counting objects that have a particular mark
set. For this, the CountObjectsWithMark operation can be used:
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num := CloseObjectsWithMark ( con f i g , object , rad ,
markname ) ;

5.2.2 The Marks Interfaces

For algorithms that involve marks, the user may need to know about the
marks interfaces for objects in the GASP package. When creating new ob-
jects, it is necessary to set the appropriate marks on the object. When writing
the acceptance check function, it may be necessary to check for a mark on
an object.

The marks interfaces in GASP work on a set of boolean marks associated
with an object. For multi-valued marks, it must be implemented as a set
boolean marks for each possible value. The algorithm should make sure that
it does not set conflicting marks on an object.

The marks for an object are manipulated with three different operations:

AddMark(object, markname) sets the mark markname on the given object.

DelMark(object, markname) unsets the mark markname on the given ob-
ject.

HasMark(object, markname) returns true if the mark markname is set on
the given object, and returns false otherwise.

5.2.3 The Proposal Function

The proposal function for an algorithm decides on a change to propose based
on the current state of the configuration. The prototype for all proposal
functions is:

change := propose ( con f i g ) ;

The return value is a change object representing the change that is proposed.
These change objects contain all the information required to move to the next
state. There are a number of predefined change objects that can be used in
the algorithm. It is a little more involved to implement new change object
types.

AddObjectChange

The AddObjectChange type is used when proposing the addition of a new
object. The user can create such a change with the following syntax:

change := AddObjectChange ( object ) ;
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The object inside the change can be accessed with change!.obj if needed
later.

DelObjectChange

Removing an object is achieved with the DelObjectChange type. This type
is created with the following function call:

change := DelObjectChange ( object ) ;

Again, access to the object that is being removed is available as change!.obj.

ReplaceObjectChange

In the case of moving an object, a new object in the new position should be
be created and a change that replaces the old object with the new one should
be used. This type of change can be created with the following syntax:

change := ReplaceObjectChange ( addobj , de lob j ) ;

The two objects in the change can be accessed as change!.addobj and
change!.delobj if needed.

ReplaceMultipleObjectsChange

If the algorithm requires replacing one set of objects with another in the
configuration, then ReplaceMultipleObjectsChange can be used.

change := ReplaceMultipleObjectsChange ( addobjs , de l ob j s ) ;

The two arguments to this function are lists of objects that are to be replaced.

5.2.4 The Acceptance Check Function

The acceptance check function for the algorithm calculates the probability
of accepting the proposed state. The prototype for all acceptance check
functions is:

probab i l i t y := acceptancecheck ( con f i g , change ) ;

When the acceptance check function is called, the configuration will already
be in the proposed state. The change that was performed is passed as an
argument in case that is needed when calculating the acceptance probability.

For some algorithms, it may be necessary to check what type of change
was proposed. For each of the change objects, there is a boolean func-
tion to check for that type. These are just the name of the change type
with ‘Is’ prepended. There are IsAddObjectChange, IsDelObjectChange,
IsReplaceObjectChange and IsReplaceMultipleObjectsChange.
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5.2.5 An Example

To put this into practice, we look at an example of implementing an algo-
rithm from scratch with GASP. We reimplement the Widom-Rowlinson point
process, which does not fit as neatly into the simulation framework as some
other algorithms.

For this process, we implement the bulk of the algorithm in the proposal
function. The proposal function performs one phase of the algorithm (that is,
remove all points of a particular colour, and add new points of that colour).
The acceptance check function always returns a probability of 1 to accept the
change. We also keep some extra information in the configuration to keep
track of whether we are supposed to be adding red or black points in the
next iteration.

For this example, we use a 300 by 300 configuration, a minimum distance
of 15 and 100 and 120 as means of the Poisson distributions for the number
of red and black points respectively.

# create a c o n f i g u r a t i o n o b j e c t
con f i g := PointConf igurat ion ( 0 , 0 , 3 0 0 , 3 0 0 ) ;
# the f i r s t i t e r a t i o n w i l l add b lack po ints

4 con f i g ! . i sRedI te r := false ;

rad := 15 ;
# set up Poisson random number generators

8 red rnd := CreatePoissonRNG (100) ;
b lack rnd := CreatePoissonRNG (120) ;

# def ine the proposa l func t ion for the a lgor i thm
12 propose := function ( con f ig )

local del , add , obj , num, i , RandRat ;

# are we adding red points during t h i s i t e r a t i o n ?
16 i f con f i g ! . i sRedI te r then

# we want to rep lace a l l e x i s t i n g red points
del := GetObjectsWithMark ( con f i g , ” red ” ) ;
add : = [ ] ;

20 num := red rnd ( ) ; # number of po ints to add
for i in [ 1 . . num ] do

obj := RandomNewObject ( con f i g ) ;
AddMark( obj , ” red ” ) ;

24 # add the o b j e c t i f i t i s far enough away
# from the b lack po ints
i f CloseObjectsWithMark ( con f i g , obj , rad ,

” black ” ) = 0 then
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28 Append( add , [ obj ] ) ;
f i ;

od ;
else

32 # we want to rep lace a l l e x i s t i n g b lack po ints
del := GetObjectsWithMark ( con f i g , ” black ” ) ;
add : = [ ] ;
num := black rnd ( ) ; # number of po ints to add

36 for i in [ 1 . . num ] do
obj := RandomNewObject ( con f i g ) ;
AddMark( obj , ” black ” ) ;
# add the o b j e c t i f i t i s far enough away

40 # from the red points
i f CloseObjectsWithMark ( con f i g , obj , rad ,

” red ” ) = 0 then
Append( add , [ obj ] ) ;

44 f i ;
od ;

f i ;
con f i g ! . i sRedI te r := not con f i g ! . i sRedI te r ;

48 return ReplaceMultipleObjectsChange ( add , del ) ;
end ;

# now the acceptance check funct ion
52 acceptance check := function ( con f i g , change )

return 1 ;
end ;

56 # f i n a l l y , s t a r t up the g r a p h i c a l user i n t e r f a c e
GUISimulate ( con f i g , ”Red−Black ” , 3 0 0 , 3 0 0 ,

propose , acceptance check ) ;

This example will bring up the GUI where the user can run the simulation.
On lines 8 and 9, we create Poisson random number generators used to
calculate the number of points in the simulation. The rest of the example
is fairly straight forward. The simulation should look something like Figure
5.1.

This particular algorithm can also be used through the existing Create-

RedBlackPropose, and the CreateFixedCheck with a probability of 1.
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Figure 5.1: Red-Black Point Process

5.3 Creating New Configuration Types

For some problems, the supplied configuration types are not sufficient. Either
the type of objects that make up the state are not covered by the provided
configuration types or the existing configurations are not efficient enough.

As an example of the second case, if we had an algorithm that performed
a lot of checks to count the objects close to a particular object, then it may
be appropriate to use a different configuration type that was more optimised
for that sort of operation. Such an optimisation would be to sort the objects
into bins according to where they are located in the plane. Now to find all
objects within a given radius r of a particular object y, we only have to
check the bins that are within a radius r of the bin that contains y. While
this internal representation for the configuration speeds up these distance
checking operations, it slows down other operations such as counting all
objects in the configuration.

The creation of new configuration types requires knowledge of the GAP
object model. This is covered in the Programming in GAP 4 manual [5] that
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is distributed with GAP.
New configuration types must be derived from the abstract object cate-

gory IsConfiguration. If a new object type is required, it must derive from
IsPictureObject.

Any new configuration must implement all the operations listed in the
previous section. In addition to those operations, the new configuration
must implement a number of operations that are used to implement various
parts of GASP. The extra operations are:

AddObject - this operation is used to add an object to the configuration. It
is not designed to be called by algorithms directly. Instead, it is used to
implement change objects that add objects to the configuration. The
prototype for this operation is:

AddObject ( con f ig , ob ject ) ;

DelObject - this operation is used to delete an object to the configuration.
As with AddObject, it is not designed to be called by algorithms di-
rectly. The prototype for this operation is:

DelObject ( con f i g , ob ject ) ;

DrawConfiguration - this operation is used to draw the configuration of
objects to a graphic sheet. This will generally be implemented by
calling the DrawObject method on each object in the configuration.
The prototype is:

DrawConfiguration ( con f i g , g raph ic sheet ) ;

The objects that make up the configuration need only implement a few
operations. The two required operations are:

SquareDistance - this operation calculates the square of the distance be-
tween two objects. The prototype for SquareDistance is:

di s tance := SquareDistance ( object , o the rob j ec t ) ;

DrawObject - this operation is responsible for drawing the object to an XGAP
graphic sheet. The prototype for DrawObject is:

DrawObject ( object , g raph ic sheet ) ;

Provided that the new object type is implemented as an objectified record,
then the marks operations need not be implemented. Otherwise, those in-
terfaces must be reimplemented for the object type.

For more information on implementing new configurations, see the imple-
mentation of the PointConfiguration type in the GASP package.
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5.4 Change Objects

Change objects are used in the GASP framework to represent all changes
made to configuration objects. GASP comes with a number of useful change
object types, which were described in Section 5.2.3.

New change objects must derive from the abstract category IsChange.
A change object contains all the information that is required to apply the
change to the configuration, or to revert it once applied. These two actions
on the configuration are handled by the following two operations:

ApplyChange ( change , con f i g ) ;
RevertChange ( change , con f ig ) ;

These operations must be implemented for each new change type. Usually
a change object is implemented in terms of the AddObject and DelObject

operations of the Configuration type, so that it may be used with more
than one configuration type.

It is also desirable that the new change object type implement the stan-
dard GAP operation PrintObj, which is used to print a representation of
the object to a file. This operation will be called when writing the type of
change to the log file. For this reason, it is required that PrintObj write the
code necessary to recreate the object. If this operation is not implemented
correctly, the usefulness of the log file is greatly reduced.

5.4.1 The Log File

Provided that the user turned on logging, all changes to the configuration
are written to a log file. The lines in the log file look similar to:

[ change, acceptprob, accept ]

Here, acceptprob is the calculated probability of accepting the change and
accept is a boolean representing whether or not the change was actually
accepted and applied.

The log file contains all the information required to replay the simulation
to recreate the final state of the simulation. In fact, it is possible to replay
the simulation up to any point by using the log. This could be used to play
back the simulation at a faster rate.

The log is also a useful source of statistics about the run of the simu-
lation. For instance, we can look for patterns in the types of changes that
are proposed and the acceptance rates. Some interesting information the log
could provide are:

• states for which proposals are given very low acceptance probability.
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• lengths of runs of acceptances or rejections.

• changes in the acceptance probability over time.

I have not completed the framework to used to parse the log file for post
simulation analysis. When the log parsing framework is complete, it will be
added to the GASP package. However, parsing the log is very simple, as each
line is a valid GAP expression. So it is possible to read the log before the log
parsing framework is complete.



50 CHAPTER 5. IMPLEMENTATION



Chapter 6

Conclusion

The GASP package should prove to be a useful tool for simulation of spatial
statistical processes. The package is designed to be as extendable as possible,
I expect that it will become more useful in the future as more algorithms are
added to the library accompanying GASP.

In hindsight, it may have been a better decision to choose a different
language. Parts of the framework that required floating point support could
only be tested by people who had access to the development version of GAP,
as there are no publicly released versions of GAP with floating point support.
Once the next version of GAP is released, this barrier will be removed.

If GASP is too slow to run a simulation, GAP comes with a GAP to C
translator, which can increase the speed of a program. Alternatively, GASP
can be used to explore an algorithm, before using another program to perform
a longer simulation.

I plan to add some more features to GASP and submit it as a share
package for GAP.

51
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