GASP: A Computing Framework For Markov
Chain Monte Carlo Spatial Problems

James Henstridge
james@daa.com.au

Overview

m An example with mathematical model
m Description of GASP

B Demonstration

Example

H positions of pine trees

Point Processes

B Point processes are processes of configurations of points
In the plane

m Probability of a configuration defined by density function

Strauss Process

B The Strauss Process Is a model for looking at point
clustering patterns.

f(x) = afnt)y=t)
m Difficult to generate instances of the probability density

function directly

®m Need some other method to generate these configurations

Simulation Point Processes

m [terative algorithms are used to simulate the point
processes.

m Compare producing a random ordering for a pack of cards

vs. shuffling the pack.

m One such algorithm is the Metropolis-Hastings Algorithm

propose a change to the configuration

calculate probability of accepting the change

make a random decision whether to accept the change
If we accept, apply the change to the configuration.
repeat

GASP

m | designed it as a framework to implement such
simulations

(Generating Algorithms for Spatial Patterns)
m Can be used for algorithms similar to Metropolis-Hastings

m Written with the GAP package.

computer algebra package
freely available
Interactive

GASP Simulation Framework

(Initial state)
v

Propose new state «

Y

Calculate acceptance
probability p

Yes

Accept Reject

with prob. p Continue?

Accept proposed

st?te (Stop)

GASP Simulation Framework

(Initial state)
v

Propose new state

<

Y

probability p

Calculate acceptance

Accept
with prob. p

Accept proposed
state
1

Reject

Yes

Continue?

(Stop)

GASP Simulation Framework

(Initial state)
v

Propose new state «

Y

Calculate acceptance
probability p

Yes

Accept Reject

with prob. p Continue?

Accept proposed

st?te (Stop)

GASP Simulation Framework

(Initial state)
v

Propose new state «

Y

Calculate acceptance
probability p

Yes

Accept Reject

with prob. p Continue?

Accept proposed

st?te (Stop)

GASP Simulation Framework

(Initial state)
v

Propose new state «

Y

Calculate acceptance
probability p

Yes

Accept Reject

with prob. p Continue?

Accept proposed

stzlﬂe (Stop)

GASP Simulation Framework

(Initial state)
v

Propose new state «

Y

Calculate acceptance
probability p

Yes

Accept Reject

with prob. p Continue?

Accept proposed

st?te (Stop)

The Change Log

m Most algorithms work with changes to the configuration
m Changes are interesting when analysing a simulation.

m sufficient to reproduce simulation

m Allows us to create more detailed logs

Applications of the Change Log

m Replay the simulation at high speed, pausing for certain
occurences.

m Looking at runs of rejections.

m plot trajectories of:

number of points
a derived ‘score’ for the configuration

Example

m config := PointConfiguration(0,0,300,300);
m propose := CreateSimpleFlipPropose(1/2);

m check := CreateStraussCheck(1/900, 9/10, 15);
m GUISIimulate(config, "Strauss”, 300, 300, propose, check);

Example

m config := PointConfiguration(0,0,300,300);
m propose = CreateSimpleFlipPropose(1/2);

m check := CreateStraussCheck(1/900, 9/10, 15);
m GUISIimulate(config, "Strauss”, 300, 300, propose, check);

Example

m config := PointConfiguration(0,0,300,300);
m propose := CreateSimpleFlipPropose(1/2);

B check := CreateStraussCheck(1/900, 9/10, 15);
m GUISIimulate(config, "Strauss”, 300, 300, propose, check);

Example

m config := PointConfiguration(0,0,300,300);
m propose := CreateSimpleFlipPropose(1/2);

m check := CreateStraussCheck(1/900, 9/10, 15);
m GUISimulate(config, "Strauss”, 300, 300, propose, check);

Conclusion

®m Implement new algorithms
m Submit as official share package for GAP

m Extend functionality

