
EggMenu

James Henstridge <james@daa.com.au>

Data Analysis Australia

Gnome Foundation

 Introduction

 What is EggMenu?

 Gnome development processes

 EggMenu in depth
 Comparison with existing APIs

 Description

 What is EggMenu?

 A new menu and toolbar handling API

 Currently in development

 Will hopefully land in GTK 2.4

 Development Process (overview)

 Pre-Gnome 1.0: development is fairly unstructured

 Gnome 1.x: commit to providing binary compatibility
 new features occasionally added

 Gnome 2.x: move closer to providing forward and
backward compatibility in a minor series of versions

 2.0.x releases are bug fixes

 2.2.x is bug fixes + new features (backward compatible).

 Pre-1.0 Gnome Development

 Development driven by what hackers were interested in

 Many people with check in privileges, but no strong
standards for what to check in to the development

platform (other than "doesn’t break the build").

 Resulted in a lot of good ideas along with many bad ideas

 Was not a great platform to recommend other people
base apps

 The 1.x Platform

 Something that other people could develop against.

 Some cruft removed from platform libraries
 Keep stuff that was actually being used, and we would be able to

maintain

 Maintained backward compatibility throughout 1.x series.
 most new features were implemented in new releases of the platform,

but not all.

 (eg. some packages would require gnome-libs-1.2.3 because they used a 5 line function that

was added in that release).

 2.x platform

 Major upgrade to GTK (3 years in development)

 Taken as an opportunity to fix many of the problems in the
interface that could not be fixed without breaking

compatibility.

 Harder guarantees of binary compatibility
 Within a minor series (2.0.x, 2.2.x, etc), forward and backward binary

compatibility is maintained

 Has required us to develop new ways to introduce APIs
 adding a bad API may mean managing that API for years

 libegg is part of the new development process

 Example: GnomeLamp

 A then unknown loon called Bowie posts to gnome-list
about his "Color Reactive GUIs"

 I propose that the Gnome desktop not only -feature- this design

innovation, but figure it prominently in the general layout of each

window as per the recommendations listed above, and shown in the

appendices.

 Two days later, an implementation turns up in gnome-libs

 API:
 lamp = gnome_lamp_new_with_color(color);

 gnome_lamp_set_type(GNOME_LAMP(lamp), GNOME_LAMP_BUSY);

 Example lamps:

 GnomeLamp (continued)

 Usability problems:
 not obvious what the widget is, does or represents

 I18N problems:
 new_with_color() and set_color() are bad, because different colours

have different meanings to people.

 set_type() has the potential for localisation

 Accessibility problems:
 colours is not a good medium to communicate information to people
 blind users, colour blind users, etc.

 The set_color() variant does not follow desktop theme.

 There are almost always better ways to provide
information

 Example: GtkTreeModel/GtkTreeView

 Was developed as a new tree widget for GTK 2.0

 Initially developed as a standalone module in CVS

 Design looked at existing widgets that performed the
same task

 Java Swing

 Qt

 Initial implementation reviewed on gtk-devel-list

 After design issues found during review were fixed, moved
to GTK.

 EggMenu

 Existing menu and toolbar handling API in GTK is not
sufficient for advanced programs.

 Bonobo has a more full featured API, but has some issues
 API is quite different to GTK API, so is a barrier to porting apps to

Gnome

 Requires use of CORBA, which is not always desired.

 Want an API in GTK that:
 satisfies needs of larger applications

 simple to use so that it doesn’t look too heavy for small applications

 flexible enough that it can be extended to do what component systems
and compound document systems need it to

 Existing Menu/Toolbar API

 Code for creating menus looks a bit like this:
 Create GtkMenuBar

 Add GtkMenuItems for toplevel menus, and attach GtkMenus to them.

 Add GtkMenuItems to the GtkMenus

 Attach callbacks to the "activate" signal of the menu items

 Repeat for sub-menus ...

 There is GtkItemFactory to simplify things, but it does
essentially the same thing as this

 Toolbars are similar, although no sub-menus.

 Problems with this setup

 Menu structure defined by code
 if you want to rearrange menu structure, you need to rearrange the code
 sometimes causes problems with signal connections, etc

 To enable or disable a user action, you must alter the
state of the GtkMenuItem or toolbar button.

 if you have multiple ways of performing the action, you need to alter all
widgets.

 Doesn’t even attempt to handle things like menu merging

 Actions

 Represent something the user can do
 a callback (or more than one)

 a label to use in menu items

 maybe a shorter label for toolbar buttons

 an icon

 state (sensitivity, visibility, etc)

 Can create an arbitrary number of menu items and toolbar
buttons for an action

 properties and state of menu/toolbar items mirror the action they
represent

 set action to disabled -> all widgets representing the action are disabled

 Different types of actions (extensible)

 Action Groups

 Actions are grouped together into groups of related actions
 actions that should be available in the same context

 global actions: quit, new, open, etc

 document specific actions: save

 mode specific: actions needed when in a particular mode
 table editing in a word processor

 drawing layer in a spreadsheet

 Simple apps may have one action group

 Complex apps will have multiple groups.

 UI Merging (continued)

 Orthogonal to actions
 some toolkits have the action concept without menu merging).

 Used to overlay a set of menu/tool items onto another set.
 and demerge them

 A tree of menus and toolbars is maintained, with names
attached to nodes.

 Nodes map to actions
 if action is provided by multiple action groups, top action group wins

 Menu layouts described by XML files
 based on Bonobo UI format

 translatable strings kept out of the XML file

 Merge Example

 file1.ui file2.ui

 Root Root

 menu menu

 submenu: FileMenu submenu: FileMenu

 menuitem: Open separator

 placeholder: TestPlaceholder menuitem: Quit

 submenu: HelpMenu placeholder: TestPlaceholder

 menuitem: About submenu: EditMenu

 dockitem: toolbar1 menuitem: Cut

 toolitem: NewButton dockitem: toolbar1

 toolitem: OpenButton

 Merged UI

 Root

 menu

 submenu: FileMenu

 menuitem: Open

 separator

 menuitem: Quit

 placeholder: TestPlaceholder

 submenu: EditMenu

 menuitem: Cut

 submenu: HelpMenu

 menuitem: About

 dockitem: toolbar1

 toolitem: NewButton

 toolitem: OpenButton

 UI Merging (continued)

 Nodes merged based on names
 if node has no name, the node type is used as the name

 New nodes appended to containers
 there is a flag to prepend instead

 Placeholders are "virtual containers" used to add ordering

 Future

 API for adding dynamic menu items
 something better than bonobo’s API

 Get more apps to test EggMenu API
 and fix problems.

 prepare for GEP process

 Conclusions

 Gnome Enhancement Proposals
 http://developer.gnome.org/gep/

 Code available in Gnome CVS
 libegg module, libegg/menu subdirectory

