EggToolbar and EggMenu

GUADEC 2003
Dublin, Ireland James Henstridge <james@daa.com.au>



Introduction

e What are they?

e EggMenu in depth.
= Comparison with existing APIs.
m Some concepts used by the system.
m Description.



What Are They?

EggToolbar:

e A new toolbar implementation for GTK.

e Aims to be mostly backward compatible with the existing GtkToolbar and
the BonoboUlToolbar.

EggMenu:

e A new menu and toolbar handling API.
e Action based.

Both will hopefully land in GTK 2.4.



Why Target GTK?

e While some people would like to see all GTK application developers use
Gnome libraries, this probably won't happen soon for a number of
reasons:

= Portability to Windows.
= Limit number of dependencies.

e Adding new features at the wrong conceptual level to encourage
application developers doesn't seem to work.

e Need a better strateqy.
= Provide a good set of APIs in GTK for people to use.
m Make those APIs extensible so that Ghome (and others) can add some value.

e This has the following benefits:
m GTK only application developers can also use the best of our APIs.
= |f they want to use some Gnome libraries, they don't need to rewrite half their
application.



EggToolbar History

e Existing GtkToolbar acts quite different to most containers.
= children are usually created while adding to the parent.
= All interfaces for manipulating buttons work with child indices.
= a pain to keep track of if you are removing or inserting items.
= Some desired toolbar layouts are impossible.
= Right aligned items.
m items that expand (such as the location bar in a web browser).

e BonoboToolbar also has its problems:
= |t was written due to limitations of GtkToolbar.
= |t is not exposed directly to the programmer.
m |t acts subtly different to GtkToolbar.



EggToolbar Features

e Primarily written to provide features needed by the new menu code.

e Designed to provide an APl backward compatible with GtkToolbar.
= If you never use any of the new APIs, it should act almost identical to the old
API.
= |f you do use some of the new interfaces, some of the obscure parts of the old
API will change.

e All toolbar child widgets are EggToolltems.
= [tems can be added and removed like normal widgets.
= Some intelligence has been moved to the items, so that they are responsible
for following the style of the toolbar.

e |tems can be right aligned. (eg. throbbers)
e |tems can expand to fill available space. (eg. location bars)
e Overflow is handled.



Why a New Menu Handling API?

e Existing menu API is insufficient for advanced programs.

e Bonobo addresses this to an extent, but has some issues:
= API differs to the GTK one, so significant effort must be made to port to
Gnome.
m Requires use of CORBA, which some people don't like for some reason.

e We want an APl in GTK that:
m satisfies the requirements of larger applications.
» satisfies needs of larger applications
= simple to use so that it doesn't look too heavy for small applications
= flexible enough that it can be extended to do what component systems and
compound document systems need it to



Existing Menu/Toolbar API

e Code for creating menus looks a bit like this:
= Create GtkMenuBar
m Add GtkMenultems for toplevel menus, and attach GtkMenus to them.
= Add GtkMenultems to the GtkMenus
m Attach callbacks to the "activate" signal of the menu items
= Repeat for sub-menus ...

e Toolbars are similar, although no sub-menus.

e The GtkltemFactory code can help here, but it is essentially a short hand
for the above.



Problems With the Existing API

e Menu structure defined by code
= if you want to rearrange menu structure, you need to rearrange the code
= sometimes causes problems with signal connections, etc

e To enable or disable a user action, you must alter the state of the

GtkMenultem or toolbar button.
= if you have multiple ways of performing the action, you need to alter all
widgets.

e Doesn't even attempt to handle things like menu merging



Actions

e Represent something the user can do
= a callback (or more than one)
= a |label to use in menu items
= maybe a shorter label for toolbar buttons
= anicon
m state (sensitivity, visibility, etc)

e Can create an arbitrary number of menu items and toolbar buttons for an

action
m properties and state of menu/toolbar items mirror the action they represent
m Sset action to disabled -> all widgets representing the action are disabled

e Different types of actions (extensible)



Action Groups

e Actions are grouped together into groups of related actions
m actions that should be available in the same context
= global actions: quit, new, open, etc
» document specific actions: save
= mode specific: actions needed when in a particular mode
= table editing in a word processor
= drawing layer in a spreadsheet

e Simple apps may have one action group
e Complex apps will have multiple groups.



Ul Merging (continued)

e Orthogonal to actions
= (some toolkits have actions, but do not provide a menu merge API).

e Used to overlay a set of menu/tool items onto another set, and demerge
them later.

e A tree of menus and toolbars is maintained, with names attached to
nodes.

e Nodes map to actions
= if action is provided by multiple action groups, top action group wins

e Menu layouts described by XML files
m based on a subset of the Bonobo Ul format
m translatable strings kept out of the XML file



Merge Example

filel.ui file2.ui
Root Root
menu menu
submenu: FileMenu submenu: FileMenu
menuitem: Open separator

placeholder: TestPlaceholder
submenu: HelpMenu
menuitem: About
dockitem: toolbarl
toolitem: NewButton

menuitem: Quit
placeholder: TestPlaceholder
submenu: EditMenu
menuitem: Cut
dockitem: toolbarl
toolitem: OpenButton




Merged Ul

Root
menu
submenu: FileMenu
menuitem: Open
separator
menuitem: Quit
placeholder: TestPlaceholder
submenu: EditMenu
menuitem: Cut
submenu: HelpMenu
menuitem: About
dockitem: toolbarl
toolitem: NewButton
toolitem: OpenButton



Ul Merging (continued)

e Nodes merged based on names
= if node has no name, the node type is used as the name

e New nodes appended to containers
m there is a flag to prepend instead

e Placeholders are "virtual containers" used to add ordering



Putting it into Practise

Creating an action:;

action = g object new(EGG TYPE ACTION,
"name", "quit",
"label"”, ("Quit"),
"tooltip", ("Quits the application"),
"stock id", GTK STOCK QUIT,
NULL) ;

Creating an action group:

action group = egg action group new("base actions");
egg action group add action(action group, action);



Putting it into Practise (continued)

Creating the EggMenuMerge object:

merge = egg menu merge new();
egg _menu merge insert action group(merge, action group, 0);

Adding some menus:

merge id = egg menu merge add ui from file(merge, "menus.ui", &err);

Getting the menu bar:

menubar = egg menu merge get widget(merge, "Root/menu");

Removing menu items:

egg menu merge remove ul(merge, merge id);



Accelerators

Accelerators are handled by the GTK accelerator map.
e All actions are assigned an accelerator path of the form:

<Actions>/group-name/action-name

e A shortcut is associated with this accelerator path.

e All menu and toolbar items take on this accelerator path.

e The GTK accel map code makes sure that the correct shortcut displays
next to the menu item.

This has the following benefits:

e Two user interface elements representing the same action can be
activated with the same keyboard shortcut.

e If dynamic shortcut editing is turned on, it will work correctly for EggMenu
based menus.



Accessibility Concerns

e Hasn't been investigated much so far.

e We have the ability to provide a lot more information to accessibility tools
compared to the older menu system:
= |f two widgets in the Ul will perform the same action, we could make that
relation explicit.
= As an alternative to navigating all the menus, an AT could provide a way to
trigger actions directly.



EggMenu To Do

e API for adding dynamic menu items. Will probably look like this:
m Create a merge ID.
= manually create a node in the menu tree using that merge ID.

e Get more apps to test EggMenu API
= Find out what is needed.
m Make things more robust.



